
ELSEVIER Thermochimica Acta 309 (1998) 181-192 

thermochimica 
acta 

Determination of instantaneous growth rates using a cubic spline approximation 1 

Kons t an t i n  V. P a r c h e v s k y  a'*, V l a d i m i r  P. P a r c h e v s k y  2,b 

a Crimean Astrophysical Observatory, p/o Naucn); Crimea 334413, Ukraine 
b Institute of Biology of Southern Seas, Sevastopol, Crimea 335011, Ukraine 

Received 1 May 1997; received in revised form 18 September 1997; accepted 22 September 1997 

Abstract 

The well-known equation for the evaluation of relative growth rate (RGR) RGR=ln(w2/wl)/(t2-tO was shown to be an 
average relative rate. Only in the case of exponential growth law is this equation valid for both average and instantaneous 
rates. It depends not only on the time interval of averaging [q, t2] but also on the error of measurements. Under certain 
conditions, real growth rate could not be seen among noise resulted from data errors. Other equations often used such as 
RGR=[w2-wd/[wj((t2-tO] or its modification RGR=[w2-wd/[O.5((wl+w2)((t2-q)] and %increase={(w2/wO^[l/ 
( t2- t l ) ] - l}100%, do not describe rates and cannot be used for the purpose in mind. Such a situation impelled us to 
develop a new approach for determining instantaneous rates directly from the experimental data for any process. The idea of 
this method consists of an approximation of data by a cubic spline regression having first and second derivatives. The 
analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimisation 
of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous 
rate directly from the experimental data. The instantaneous rate is a highly sensitive characteristic for study of natural and 
anthropogenic influences on the biological and ecological processes. For illustration, we analysed heat production of 
microplankton and growth rate of red seaweed Gracilaria verrucosa versus temperature. The program is written in C++.  
~ii 1998 Elsevier Science B.V. 
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1. Introduction 

The concept ' ra te '  is widely used in the modem . 
ecology and biology for the description of ecological  
and biological  processes such as growth and produc- 
tivity, photosynthesis and respiration, matter and 
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energy fluxes, etc. As a rule, it is impossible to 
measure the instantaneous rate of a process studied 
in the course of  an experiment. Usually, only the 
integral changes of a variable studied can be measured 
(eg. changes of weight or length in time) rather than its 
rate, provided that the measurements are conducted 
discretely at definite time moments. Under such 
conditions, one can obtain only the average rate 
of a process for the selected time interval. Assume, 
for example, the value w is measured in an experi- 
ment. By definition, the instantaneous absolute 
rate and the instantaneous relative rates are given, 
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correspondingly, by 

dw 1 dw 
V = ~ - ,  Vrel=-----wdt (1) 

If at the instants of time tl and t2 the measured values 
of w are equal to Wl and w2, respectively, then one can 
find the average absolute rate (V) and the average 
relative r a t e  ( V r e l )  for the time interval (t2-tl).  Opera- 
tion (.) of time averaging is defined as follows 

t2 

1 /f(t)dt, ( 2 )  
(f) -- t2 t~--~ 

Ii 

wheref(t) is an arbitrary function of time. Substituting 
dw/dt  and 1/w(dw/dt) from (1) into (2) and integrating 
gives the following equations for average rates: 

t2 

1 f d W d t  _ w(t2) - W(tl) 
(V) -- t2 - tl J dt t2 tl ' 

(3) 

tl 

t2 

1 f±dWdt 
(Vrel) -- t2 t-------~l J w  dt  

It 

_ lnw t=t2_ 1 lnW(t2) (4) 

t2 - tl t=tt t2 - tl W(tl) " 

It is necessary to emphasise that Eqs. (3) and (4) were 
derived without any a priori assumptions of the depen- 
dence w on t and, hence, these equations are correct for 
an arbitrary dependence w on time. Authors very often 
omit the word 'average' in the expression 'average 
rate' and such a situation leads to some misunder- 
standing because the readers can mistakenly consider 
it to be a question of an instantaneous rate. 

Eq. (4) was simultaneously introduced into biology 
in 1927 by the American and Russian scientists Brody 
and Schmalhausen [2,22]. They considered this equa- 
tion to provide an instantaneous relative growth rate of 
organisms. Brody's arguments in support of this view 
were as follows. Let us write the expression for the 
instantaneous relative rate k=l /w(dw/d t )  (Brody's 
notations) in the form of a differential equation 

dw 
- -  = k w .  ( 5 )  
dt 

Solution of Eq. (5) gives the relationship of w on t 

A e  kt w ~ 

Brody wrote: "The  constant k has a perfectly definite 
meaning. It is the instantaneous relative rate o f  growth 
f o r  a given unit o f  t ime" (Brody, 1945, p. 508). Now, 
having the two values 

W 1 = A exp(kq), W 2 = A exp(kt2) 

at the instants of time t~ and t2, one can determine the 
instantaneous rate according to the following equation: 

1 in w(t2) k - . (6) 
t2 - tj w( t l )  

which is same as Eq. (4). Apparently, the discrepancy 
arises because Eq. (4) was derived as the average 
relative rate but Brody obtained the same expression 
for the instantaneous rate. 

If the value k is constant and does not change with 
time, then Brody's reasoning is correct. Only in this 
particular case the expressions for the average relative 
rate and the instantaneous relative rate will coincide. 
But if k depends on time, then the differential Eq. (5) 
will not have such a simple solution and the expression 
for the instantaneous rate k(t) will be more compli- 
cated. This results in a vicious circle! In order to find 
the instantaneous relative rate, according to Brody, it 
is necessary to know k(t) or, in other words, the 
instantaneous relative rate. 

An analogous situation also arises when Eq. (3) is 
closely examined. When w will depend on t linearly, 
the equations for the average and instantaneous rates 
will coincide. It should be emphasised once again that 
Eqs. (3) and (4)are correct f o r  any dependence w(t) 
and represent the average rates depending on the time 
interval over  which averaging is taken. 

At present, a number of researchers 
[1,3,4,6,11,13,17-20] have been multiplying Eq. (6) 
by 100% without any reason and interpreting it as the 
rate expressed as a per cent of mass increase during the 
time interval but this operation is shown to be incor- 
rect. The value k is a dimensional  one, having the 
dimension T -1. 

Along with Eq. (4) some researchers use the fol- 
lowing formula (7) for the study of growth and 
productivity of organisms [8,14,15,21,26] as well as 
for investigating the water movement and matter flux 
in ecosystems [7,9]. 

w(t2) - w(t , )  
( V r e l )  - -  w(t, )(t2 - tl ) ' (7) 
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or its modification 

w(t2) - w(h)  (8) 
(Vrel) - -  ½[w(tl) + w(t2)](t2 - tl)" 

These formulae are incorrect. They do not describe an 
average relative rate, moreover, they do not produce 
average of any value for an arbitrary time interval 
[tl, t2]. 

In order to complete the review of formulae used for 
calculating average rates, it is necessary to mention 
the formula which permits the calculation of the 
percentage increment (but not rate!) for a certain time 
interval [tb t2]. 

'/1'2-''1 ] 
- 1  x 100%. (9) t,w(ti)) 

Some investigators ([5,10,16,23] and others) mista- 
kenly designate this value as the growth rate. The 
relationship between Eqs. (9) and (4) may be readily 
ascertained 

f V% 1) 
(Vrel) = In t 1--6~-~0 + . 

The reasons stated above have stimulated us to per- 
form this investigation. 

2. Methods 

In Section 1, we have showed how the average rates 
can be obtained from observations. Now we are going 
to show that the average rates are poor parameters for 
the description of process dynamics. The question is 
that the variable quantities measured experimentally 
always have a certain scatter in data. Scattering of data 
can be affected by the error of instruments or random 
fluctuations of the process studied. At the moment, we 
are not interested in the cause of scattering; at present 
it is only essential that the conducting measurements 
provide the random variable which is characterised by 
the corresponding average and variance. 

Presenting the average of observations, we have to 
present the error of the average also. It is clear that the 
error will depend on the interval of averaging. The 
larger the time interval is the lesser the error will be. 
Thus, we can calculate average rate over a large time 
interval with a small error but only one point is of little 

importance for the understanding of the dynamics of 
process studied within this large interval. One can 
proceed otherwise. Let us divide the whole of the time 
interval into many small ones and calculate the 
averages in every small interval. We shall receive as 
many points as small intervals contained in the entire 
time interval. Nevertheless, the errors in average rates 
will increase, as smaller time intervals are used for 
their determination. The errors can increase to such an 
extent that they may become comparable with average 
rates or even exceed them several-fold. In this case, we 
cannot plot a reliable curve in spite of having many 
points at our disposition. 

Obtaining the instantaneous rate from observations 
represents a difficult task. Assume that some valuef(t) 
is to be measured in an experiment. As mentioned 
above, we do not measure the value fit) but 

jT(t) = f ( t )  + e(t), (10) 

where e(t) represents noise. For the instantaneous rate 
to be determined, it is necessary to take a derivative of 
Eq. (10). Strictly speaking, the function c(t) has no 
derivative since it is discontinuous at every point. If, 
nevertheless, we try to differentiate numerically the 
right side of Eq. (10), then dfldt will disappear in the 
noise generated by the second term. Thus, in an 
attempt to find the instantaneous rate the following 
definition 

f ~ d f _  lim f ( t  + At)  - f ( t ) ,  ( l l )  
dt At-~0 At 

will fail in advance. 
There will be several ways to resolve such a difficult 

situation. One of them is the following: one can 
approximate the experimental data by a certain curve 
having the derivative and then just calculate it analy- 
tically. Thus, we get rid of the necessity to differentiate 
noise in the right-hand side of Eq. (10). How can we 
choose such an approximate function? Power, expo- 
nential, logarithmic and other functions, widely used 
by biologists, are not fit for such a role. They approx- 
imate the experimental data insufficiently because 
they have very few free parameters. Such a derivative 
appears to have nothing in common with the real one. 

Polynomial regression cannot rescue the situation 
since there are functions which cannot be approxi- 
mated uniformly as both the degree of polynomial and 
the sample size are large in magnitude. The Runge's 



184 K.V. Parchevsky, V.P Parchevsky/Thermochimica Acta 309 (1998) 181-192 

1 . 2  

1 . 0  

0 . 8  

0 . 6  

0 . 4  

O . 2  

c 

0 . 0  

- 0 2  
- 1 . O  

' [ - -  I ~ - -  I ' 

A Q 

~ / \ - 

• / ",, _ 

, I " - ' ,  . . . . .  P °11Y'n ° m i  •1 r t e g r e s n i ° n '  I n = 3 0  , 

- 0 . $  0 . 0  O . 5  1 . 0  

x 

I I I 
4 B 

B " ' ' ,  

: ,  f - -  / 

o 

-z . :" I]M 

- 1 9 . 5 9  '~"._. ": - 1 2 . 1 6  4, 2 

- 1  .O - 0 . 5  O.O 0 . 5  ] .0  
X 

Fig. 1. (a) Approximation of artificial data (o) by means of both spline and polynomial regressions and (b) their derivatives. Data were 
simulated according to Runge's function y(x)=l/(l+25x 2) and adding noise e(x) to it. Solid line: spline approximation, dash line: 
approximating polynomial for 5th power, dotted line: approximating polynomial for 30th power. 

function y ( x ) = l / ( l ± 2 5 x  2) on the interval [ -1 ,1]  
(Fig. l(a)) is an example of  such a function. Under 
a small degree, the polynomial approximates the 
Runge's function poorly over the entire interval. On 
increasing the polynomial degree, the quality of  the 
approximation in the vicinity of  zero is improved but 
an unstable behaviour of  the polynomial near the 
limits of  the interval becomes essential (Fig. l(b)). 
The plot of the Runge's function is not shown here as it 
has a small difference from the approximating spline. 
The sliding polynomial does not ensure a sufficient 
smoothness of  the derivative. 

Nevertheless, at present, there are methods uni- 
formly approximating the experimental curve, pro- 
vided that the number of  experimental points or 
sample size is increased. One such methods is the 
method of a spline regression. The spline is a piece- 
wise polynomial function having continuous first and 

second derivatives. The first derivative obtained is 
smooth. Cubic polynomials are often chosen as such 
functions. The coefficients are matched in such a way 
that the functional of  average risk I(cO is minimised. 
The reconstruction theory of dependences from the 
limited sample size on the basis of  a functional mini- 
misation is too complicated to be described here in 
detail. Only the basic features of  the method will be 
presented in the present article, but details can be 
found in the original literature [24,25]. 

Experimenters have dealt very often with depen- 
dences when a random number y, obtained by a 
random trial with conditional probability density 
P(ylx) ,  is assigned to a number x. The problem of 
the reconstruction of  conditional probability density 
P(ylx)  is excessively difficult. But, luckily, in practice 
it is usually needed to reconstruct not the density 
P(ylx) but only its one characteristic, namely, the 
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function of a conditional mathematical expectation 
y(x), i.e. the function assigning for every number x the 
corresponding mathematical expectation y(x) of the 
random variable y, 

y(x) = / yP(ylx)dy. (12) 

The function y(x) is called a regression. 
Consider the problem of regression reconstruction 

on the basis of sample with limit size. Let the number x 
be generated randomly with a probability density P(x). 
The random number y, obtained as a result of a random 
trial with the conditional probability density P(ylx) is 

conditions, the point a*  of the minimum of the 
functional le(a) provides the functional of average 
risk I(c0 with a value which is close to minimum. To 
minimise (16), one can solve the normal system of 
linear equations 

[ST S]ije~j vr Yk = Oik ' (17) (7 k 

where aj is a set of coefficients in question, 
Sij = Gj(xi)/ai is a Nx(n+4)  matrix. Let ct* be a 
solution of the system of linear equations. The estima- 
tion of quality of constructed approximation is given 
by 

J(n) = 
1 - V/1/N[(n + 4)(ln(N/(n + 4)) + 1) - lnr/] 

(18) 

assigned for every number x. From the random 
restricted sample 

xl ,yl;  x2,Y2;... ;XN,YN (13) 

it is necessary to reconstruct the regression (12) in the 
function set F(x,~), i.e. to find the function F(x,a*) 
which is closest to the regression y(x). As a rule, 
neither P(x) nor P(ylx) is known. One can prove that 
the functional of the average risk 

l(a) = f ( y -  F(x,a))2P(Ylx)P(x)dxdy (14) 

takes a minimum value on the regression, if 
vlx)CF(x,a) or on the nearest function to this regres- 
sion, if y(x)f~F(x,o 0 [241. The regression is sought in 
the class of cubic splines 

n+4 
y(x) = Z c~jGj(x), (15) 

j=l 

where Gj is the fundamental cubic spline, aj the 
coefficients in question, and n the number of spline 
junctions over the interval. The functional of the 
empirical risk is built up for the restricted sample (13) 

1~-~1 D" n+4 - -  - - Z  ]2 
le = A/ i=1 0.2 i oLjGj(xi) , (16) 

j=l 

where N is the sample size, Yi the vector of experi- 
mental data, and or/2 the variance of Yi. Under certain 

where (1 -7)  is a probability for the estimation to be 
true, and n the optimal number of junctions. 

The outlined algorithms were realised as a program 
written in C + + .  

3. Results 

3.1. Comparison of average and instantaneous rates 

To illustrate the application of the method, we used 
data of heat production of microplankton (from Sevas- 
topoi Bay). These data were obtained by Lopukhin and 
kindly offered for analysis [12]. A seawater sample 
(500 ml) was taken at 9 a.m. from the surface. Micro- 
plankton organisms were divided into size fractions by 
filtration through a series of membrane filters (15, 2.5, 
0.2, 0.05 gm). The ampoules with samples were 
installed into a Thermometrics-2277 thermal activity 
monitor. After thermal equilibration over 60 min, the 
heat signal was registered over a period of 20 h at 20°C 
(Fig. 2(a)). The rate of heat production is shown in 
Fig. 2(b). These curves were obtained by analytical 
differentiation of the approximating spline regression. 
Fig. 3 permits to compare results with the ordinary 
calculations of derivatives according to formula (3). 
We can see that the usual procedure of calculating 
derivatives is highly unstable. 

The second example shows how to apply this 
method to obtain optimal temperature for maximal 
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Fig. 2. (a) Heat production of microplankton from Sevastopol Bay. Micro-organisms were divided into size fractions by filtration through the 
system of membrane filters with mesh size 15 pm, 2.5 lam, 0.2 ~tm and 0.05 lam. (b) Heat production rates, calculated by analytical 
differentiation of the approximating spline regression. 

growth rate. We used data of growth of the red sea- 
weed Gracilaria verrucosa (from Kazach'ya Bay near 
Sevastopol). These data were obtained in Trin- 
kenschu's laboratory. Growth experiment was con- 
ducted in the Plexiglas culture chamber from 21 
May to 16 June 1992. The initial concentration of 
biomass was 3.12 g 1-1. Water was changed every day 
and at this time nutrients were added and the seaweed 
weight and temperature were recorded. The chamber 
was aerated at a constant rate with air to promote water 
mixing. 

Experimental observations on G. verrucosa raw 
weight changes during 57 days and the approximating 
cubic-spline description of these data are presented in 
Fig. 4(a). The average relative rates of growth calcu- 
lated according to Eq. (4) for A t = l  day (saw-tooth 
curve) and the instantaneous relative rates of growth 
obtained by means of recommended method of spline 

regression (smooth line) are represented in Fig. 4(b). 
Here, the situation is even more 'dramatic' than in the 
first example. The saw-tooth curve cannot permit to 
draw any assumptions on the seaweed growth 
dynamics. Under an ordinary approach, there is noth- 
ing to do in this case but to average data and then to 
find the confidence interval for the average and, 
finally, to do nothing more than this. The suggested 
method permits to extract more detailed and princi- 
pally new information from growth dynamics as it will 
he revealed further. 

3.2• Optimal temperature for maximum growth rate 

The instantaneous relative rate is a more sensitive 
parameter with respect to the external effects rather 
than the total biomass. The temperature changes 
during the experiment are presented in Fig. 5(b). 
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Fig. 3. (a) Heat production rates of microplankton from Sevastopol Bay. Comparison of the usual approach to calculation of derivatives (saw- 
tooth curve) and the method based on approximating splines (smooth curve). 

Temperature in the experiment was not regulated 
and was subjected to the temperature of external 
air. On the 37th day from the beginning of the 
experiment, the temperature reduced abruptly due 
to a cold snap. The position of temperature jump on 
the plot is marked by a solid vertical line. There are 
two alternatives to approximate the discontinuous 
data. 

(i) If there are many points near the vicinity of the 
discontinuity, one may ignore the presence of 
discontinuity and treat the data as a whole array. It 
is necessary to keep in mind that an approximat- 
ing-spline curve will smooth the discontinuity, but 

the quality, however, of the approximation in the 
vicinity of the discontinuity will be deteriorated in 
this case. If there are a few points in the vicinity of 
the discontinuity, it causes unsatisfactory approx- 
imation over the entire interval. In such a case the 
second alternative is preferred. 
(ii) Let us now postulate the presence and position 
of the discontinuity in the original data and 
independently treat the arrays of data from the left 
and right sides of the discontinuity. In this case, a 
better agreement will be obtained between the 
approximating curves and the original data. The 
disadvantage of such an approach is the subjective 
choice of the position of discontinuity (we must 
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Fig. 4. Gracilaria verrucosa. (a) Approximation of experimental data of raw weight by means of cubic splines and (b) both average relative 
(solid line) and instantaneous relative (dash line) growth rates. 

define it by hand) and decrease in points of every 
treated arrays. 

We have used both the alternatives. The cubic spline 
approximation of the entire data array of temperature 
is shown by the dotted line in Fig. 5(b). The quality of 
the approximation is not sufficiently satisfactory. 
Especially, large differences are observed in the vici- 
nity of the discontinuity, as was expected. In second 
alternative, the whole temperature data array was 
divided into two arrays of lesser length. The cubic 
spline approximation of data before the discontinuity 
is shown by the solid line in Fig. 5(b). The second data 
array had insufficient points for reliable spline approx- 
imation, so we have confined ourselves to plotting of 
linear regression (dash line) which is proved to be 
close to spline regression for the whole data array. Any 

discrepancy in the vicinity of discontinuity is the result 
of the impossibility of describing the discontinuous 
data by continuous spline function. 

From 26 May (the 6th day of the experiment) till 26 
June (the 37th day), the temperature was increased 
linearly as evidenced by the straight line of linear 
regression calculated for this range in Fig, 5(b). In the 
range 23.7-30.4°C, both the curves of the spline and 
linear regression were in close agreement. In 
Fig. 5(b), this temperature range is marked by the 
horizontal dash lines. Since we have the linear depen- 
dence, the temperature range (Y scale of Fig. 5(b)) can 
be readily transformed into an adequate time interval 
(X scale of Fig. 5(a)) which is marked by the vertical 
dash lines in Fig. 5(a). On this plot, the boundary 
values for temperature as well as optimal temperature 
of the maximum growth rate are plotted. In this 
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by means of cubic splines, dash line: approximation of temperature data before and after discontinuity by means of linear regression. 

marked range the curve of the instantaneous relative 
growth rate has approximately the symmetrical bell- 
shaped form and the peak of this curve corresponds to 
the maximum growth rate. 

How can one explain the emergence of the bell- 
shaped curve? At first, the temperature was well below 
the optimal one. The increase of the temperature was 
followed by the increase of the seaweed growth rate to 
its maximum at t----26.6°C. Further increase of the 
temperature caused the growth rate to decrease and 
before the temperature jumped the rate was already 
minimal. The emergence of the second peak on the 
curve of the growth rate can also be easily explained. 
After the 37th day from the beginning of the experi- 
ment, the temperature has gradually returned to that 
tor the vicinity of the maximal growth rate and the 
second peak appears on the curve. In Sp~i, of great 

variability of temperature data for this period, we have 
attempted, as before, to calculate the temperature 
which caused the second peak to appear. Again, at 
this time the temperature was 26.8°C, and it is practi- 
cally the same as in the case of the first peak. So, the 
optimal temperatures coincide, in both the cases, 
before and after the temperature jump. But the abso- 
lute values of the growth rates, in the second case, 
were less than those in the first one, and the additional 
data for the explanation are needed. 

4 .  D i s c u s s i o n  

1. Because of vastly mathematical calculations, it is 
often fairly difficult to focus on the main problem 
around which all performances are displayed. So here, 
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we would like to pay attention to the reasons why the 
attempt to calculate the derivative in the form of 
J=Ay/~xx from a function specified by tabular data, 
is doomed to failure. At a glance it could be seen that 
the main obstacle for the correct calculation of deri- 
vative is the value of the step z~c of original tabular 
data because, by definition, the expression Ay/A.x will 
tend to the derivative when ,Xx tends to zero. Indeed, 
the decrease in step, £~x, will not only improve the 
accuracy, but can also lead to a deterioration in the 
accuracy. An apparent contradiction appears with 
respect to the definition of the derivative. The point 
is that the original tabular data have certain errors 
although the definition of derivative is assumed to 
have an infinite accuracy. To illustrate this statement, 
we have analysed the artificial data simulated accord- 
ing to the function y--sin x+cx(x) in the interval [0,Tr], 
where X(x) is a random value distributed uniformly in 
the interval [-1,1] or the so-called artificial noise, 
where e is an amplitude of noise. The results of 
calculations are shown in Fig. 6. It can be seen that 
the presence of even a slight invisible noise among 
original data results in a derivative with significant 
noise. But, it is most surprising that a decrease in the 
interval 2xx (or increase in the number of points) 
deteriorates the situation. Such a behaviour of deri- 
vative can be explained as follows. 

Consider more carefully what happens with the 
numerical differentiation of the second term. Consider 
an arbitrary value X(X). For the next measurement (it 

N ~ O 0  N ~ I O 0 0  
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v tl o J  

-1 .x ~ - - - - o . o o  1 
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Fig. 6. Plot of function y=sin x+ex(x) (c) and its numerical 
derivative (a,b) under different values of points N and noise 
amplitude e. 

does not matter on which interval zXx this measure- 
ment is done), the function X(x) can again take the 
arbitrary value within the interval [-1,1] with equal 
probability. As far as the function X(X) 'does not 
remember' its previous value, at the next measurement 
it can again take the arbitrary value from the interval 
[ -  I, 1 ] with equal probability. Dividing the remainder 
of the obtained values by ~xx, one can receive the 
parameter which is called the numerical derivative of 
the function X(X). Supposing, we took half the value of 
z2xx, then the remainder of the function would be the 
previous one, but the numerical value of the derivative 
would be larger by a factor of two. This leads to a 
greater scattering of values of the numerical deriva- 
tive. 

From a mathematical point of view, the function 
X(x) is discontinuous at each point and has no deri- 
vative, hence the entire function y(x) has no derivative. 
However, such an absolute, precise solution of the 
problem cannot satisfy an experimentator. If the deri- 
vative does not exist in the usual meaning, then 
perhaps it is possible to find a function which could 
replace a non-existent derivative in any meaning? 
Different methods, used for numerical differentiation, 
choose this function in a different way. For this 
purpose, an additional function behaviour information 
is required (continuity, degree of smoothness, variance 
of noise, etc.). This a priori information is used by 
everyone who tries to reconstruct the derivative from 
the experimental data. Some authors correctly point 
out which additional requirements of a function is to 
be satisfied, but others omit this question. Neverthe- 
less, all of them use this additional information in one 
way or another. In our case, such an additional infor- 
mation comprises in seeking a solution among the 
piecewise continuous polynomials of the third power, 
which have continuous first and second derivatives. 
These requirements do impose the-restriction on the 
smoothness of the solution. 

2. The selected mode of reconstructing the deriva- 
tive was, as mentioned earlier, not unique. This pro- 
blem can also be solved by means of different methods 
of regularization, but the parametric methods used are 
often expected to be more natural for biologists. 

3. During the discussion of this approach, the 
following question arises very often: what is the 
minimal sample size which is necessary for obtaining 
the curve of spline regression having preassigned 
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Fig. 7. Relationship between sample size N and minimal numbers of conjunctions n for probability 0.80, 0.95 and 0.99 with which the 
estimation of quality of constructed approximation is valid. 

degree of reliability. The minimal value of the sample 
size can be obtained from the condition, provided that 
the denominator of Eq. (18) is positive. The relation 
between the minimal sample size, N, and the number 
of the conjunction, n, for different values of ~/ are 
represented in Fig. 7. 

5. Conclusion 

It is shown that the method of data smoothing by 
means of an approximate cubic spline can be used 
successfully for calculating the instantaneous growth 
rate of organisms and for determining the rates of 
other biological processes. This approach makes it 
possible to take into account the entire course of 
dynamics of the process studied. The instantaneous 
rate is a very sensitive characteristic of biological 
processes. On the basis of this method, one can create 
new sensitive criteria for studying the influence of 
natural and man-made factors on biological and eco- 
logical processes. All this permits us to understand the 
mechanisms of biological processes more deeply. 
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